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Abstract

An estimate of volume of distribution (Vd) is of paramount importance both in drug choice as well as maintenance and loading dose calculations in
therapeutics. It can also be used in the prediction of drug biological half life. This study employs quantitative structure–pharmacokinetic relationship
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QSPR) techniques for the prediction of volume of distribution. Values of Vd for 129 drugs were collated from the literature. Structural descriptors
onsisted of partitioning, quantum mechanical, molecular mechanical, and connectivity parameters calculated by specialized software and pKa

alues obtained from ACD labs/log D database. Genetic algorithm and stepwise regression analyses were used for variable selection and model
evelopment. Models were validated using a leave-many-out procedure. QSPR analyses resulted in a number of significant models for acidic and
asic drugs separately, and for all the drugs. Validation studies showed that mean fold error of predictions for the selected models were between
.79 and 2.17. Although separate QSPR models for acids and bases resulted in lower prediction errors than models for all the drugs, the external
alidation study showed a limited applicability for the equation obtained for acids. Therefore, the universal model that requires only calculated
tructural descriptors was recommended. The QSPR model is able to predict the volume of distribution of drugs belonging to different chemical
lasses with a prediction error similar to that of the other more complicated prediction methods including the commonly practiced interspecies
caling. The structural descriptors in the model can be interpreted based on the known mechanisms of distribution and the molecular structures of
he drugs.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The concentration of drug in the plasma or tissues depends
n the amount of drug systemically absorbed and the volume
n which the drug is distributed as well as the clearance. The
pparent volume of distribution in the body, Vd, is a key phar-
acokinetic parameter which determines the extent of drug

istribution. It is simply a proportionality constant which relates
he amount of drug in the body and/or compartments of the body
o its plasma concentration. Therefore, despite the fact that Vd
as no physical or anatomical meaning, it represents a mea-
ure of the relative partitioning of drug between plasma (the

∗ Corresponding author. Tel.: +44 1634 883846; fax: +44 1634 883927.
E-mail address: t.ghafourian@kent.ac.uk (T. Ghafourian).

central compartment) and the tissues. An estimate of Vd is of
paramount importance both in drug choice as well as mainte-
nance and loading dose calculations in therapeutics. Moreover,
Vd, in conjunction with clearance, are the two pharmacokinetic
parameters determining the drug biological half life. A number
of different Vd terms have been defined in the literature. Eq. (1)
represents the Vd of the central compartment as the dose taken
divided by the plasma concentration of the drug at time zero
(C0) (Shargel and Yu, 1999).

Vd = Dose

C0
(1)

Two different terms have been used to describe the vol-
ume of distribution for drugs that follow multiple exponential
decay. The first, designated Vdarea , is calculated as the ratio
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of clearance to the rate of decline of concentration during the
elimination phase of the logarithmic concentration versus time
curve:

Vdarea = Dose

kAUC
(2)

The second volume term is the volume of distribution at steady
state (Vdss ) which represents the volume in which a drug would
appear to be distributed during steady state if the drug existed
throughout that volume at the same concentration as that in the
measured fluid (plasma or blood). It should be mentioned that
when using pharmacokinetics to make drug dosing decisions,
the difference between Vdarea and Vdss is not usually clinically
significant (Wilkinson, 2001).

The volume of distribution in man is traditionally predicted
from in vivo data in preclinical animals with appropriate scaling
to man (Smith et al., 2001). This can be based on allometric scal-
ing using the body weight (BW) of the species as is represented
by Eq. (3).

Vd = aBWb (3)

where a and b are regression coefficients, and b is ca. 0.9–1.0.
In cases where plasma protein binding varies across the species,
allometric scaling should be based upon the volume of dis-
tribution corrected for the extent of protein binding (Vd of
unbound drug). The more successful animal scaling prediction
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drugs together. A comparison with previous QSPR, and other
prediction methods, is made.

2. Materials and methods

2.1. Dataset

Volume of distribution was collected from the literature for
129 drug entities, belonging to different pharmacological and
chemical classes (Ritschel et al., 1995; Moffat et al., 1986; Perry,
2002; Ritschel and Hammer, 1980; Ritschel, 1976; Durnas et al.,
1990; Raaflaub and Speiser-Courvoisier, 1974; Lam et al., 1997;
Nattell et al., 1987; Schoerlin et al., 1990; Glare and Walsh,
1991; Sonne et al., 1988; Greenblatt, 1981; Fulton and Sorkin,
1995). These included, among others, benzodiazepines, bar-
biturates, NSAIDs, tricyclic anti-depressants, antibiotics such
as betalactams, tetracyclines, and quinolones. Table 1 is a list
of the drugs together with the Vd values collected from the
literature.

2.2. Structural descriptors

About 250 descriptors calculated by the TSAR 3D version
3.3 for Windows (Accelrys Ltd., USA), ACD Labs/log D Suite
release 7.0 (Advanced Chemistry Development Inc., Ontario,
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ethods include the scaling of fractal volume of distribution
Karalis et al., 2001) and a method based on the incorpora-
ion of unbound fraction of drug in tissues of animals as well
s human plasma protein binding values for the estimation
f Vd in human taking into account physiological parameters
uch as extracellular fluid and plasma volumes (Obach et al.,
997).

Quantitative structure–pharmacokinetic relationships
QSPRs) offer a convenient alternative to animal scaling
Van de Waterbeemd, 2005). This is particularly of interest
n view of the need for high-throughput in vitro screening of
bsorption, distribution, metabolism, and excretion (ADME)
n earlier stages of drug development process. Previous QSPR
tudies have focused on classification into different ratings
f volume of distribution (Hirono et al., 1994) as well as
egression models for congeneric series of molecules (Gobburu
nd Shelver, 1995; Turner et al., 2003), and structurally
nrelated drugs (Ritschel et al., 1995; Karalis et al., 2002;
ombardo et al., 2004; Ghafourian et al., 2004). In a previous
tudy we developed QSPR models for the prediction of Vd of
tructurally unrelated drugs (Ghafourian et al., 2004). In this
nvestigation, a larger numbers of drug Vd values have been
ollated from the literature and a wider range of structural
escriptors have been incorporated. The special emphasis of the
resent investigation is on the interpretability of the models and
igorous leave-many-out validation process. The large number
f compounds used in the study as well as the fact that they
over a wide range of chemical and pharmacological classes
an add to the significance and consistency of the models.
redictions have been made based on different QSPR models
or acidic drugs and basic drugs separately, as well as for all the
anada), and QSARis version 1.1 (SciVision, Academic Press,
an Diego, CA), NEMESIS (software distributed by Oxford
olecular Ltd., Oxford, UK) software packages were used in

his study. The descriptors included electronic parameters cal-
ulated by VAMP (using the AM1 Hamiltonian) in TSAR, atom
nd group counts, molecular weight and surface area and volume
alculated by TSAR, partitioning parameters of log P, log D at
arious pH values calculated by the ACD/log D suite, and topo-
ogical, shape, and three dimensional parameters calculated by
SARis. Values of pKa were collected from the literature and
CD/pKa database. Where the experimental values were not

vailable calculated values by the ACD/log D suite were used
nstead. Fraction of ionized as cations (fiB) and anions (fiA) and
he fraction unionized (fu) were calculated according to Eqs.
4)–(6) (note that only the first acidic pKa and the first basic pKa
ere considered):

B = 1

1 + antilog(7.4 − pKa)
(4)

A = 1

1 + antilog(pKa − 7.4)
(5)

u = (1 − fiB) × (1 − fiA) (6)

efore the calculation of three dimensional descriptors, energy
inimization was performed using COSMIC Force Field and
M1 Hamiltonian. Molecular descriptors calculated by the soft-
are packages were checked and omitted if more than 98% of

he values were the same. Highly intercorrelated descriptors with
quared correlation coefficient of >0.998 were also discarded.
he analyses were performed using a reduced dataset of 210
escriptors for the 129 compounds.
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Table 1
Drugs used in the study together with the volume of distribution (Vd) and plasma protein binding (ppb) values from the literature and pKa obtained from ACD/log D
suite

Drug Vd ppb (%) pKa (acid) pKa (base)

Acetanilide 0.16a * N/A 0.5r

Alprazolam 0.86a,b 70.0a N/A 2.4r

Amitriptyline 10.64a,c 94.0a N/A 9.4r

Amobarbital 1.05a,c 55.0a 7.94r N/A
Amoxicillin 0.85c,d 17.5d 2.6r 7.4r

Amphetamine 3.91a,c 27.5a N/A 9.94r

Ampicillin 0.61c,d 20.0d 2.6r 7.1r

Bromazepam 1.13e,f 55.0a 11r 2.9r

Bupivacaine 1.00a 90.0a N/A 8r

Bupropion 16.10a,b 85.0a N/A 7r

Butorphanol 5.00a 90.0a N/A 8.6r

Caffeine 0.55a,c 35.0a 14r 0.63r

Carbamazepine 1.20a,b 75.0a 14.07r −0.46r

Carbenicillin 0.25d 50.0d 2.6r −1.8p

Cefazolin 0.17c,d 80.0d 2.1r −0.21p

Cephalexin 0.34c,d 15.0d 2.7r 7r

Cephaloridine 0.23d 20.0d 2.4p −1.6p

Cephalothin 0.42c,d 65.0d 2.7p −1.6p

Cephradine 0.44c 20.0d 2.63r 7.35r

Chloral hydrate 0.60a 35.0a 10r N/A
Chloramphenicol 0.57d 63.0d 11p −1.7p

Chlordiazepoxide 0.36a,c 93.5a N/A 4.8r

Chloroquine 112.4d 55.0d N/A 9.94r

Chlorphentermine 2.50a * N/A 9.6r

Chlortetracycline 1.61c,d 50.5d 6.8r 11.01p

Clindamycin 1.00d 92.0d 12.9p 7.7r

Clobazam 1.12e 85.0a 8.59r −2.06r

Clomipramine 17.00a 92.5a N/A 9.46r

Clonazepam 3.13a,c 85.0a 10.5r 1.5r

Clorazepate 0.92a,b 97.0a 3.5r N/A
Cloxacillin 0.15d 94.0d 2.4p −3.5p

Cyclacillin 0.40c 24.0d 2.6r 7.2r

Demeclocycline 1.79d 70.0d 3.3r 11p

Desipramine 30.25a,b 80.0a N/A 10.2r

Diazepam 1.92b,c,g 98.5a N/A 3.3r

Dicloxacillin 0.13d 96.0d 2.4p −3.7p

Doxepine 12.70a,b 80.0a N/A 8r

Doxycycline 0.74c,d 56.0d 3.4r 10.8p

Ethambutol 1.34c,d 31.5a 14.4p 9.5r

Ethclorvynol 2.50a 60.0a 12.06r N/A
Ethosuximide 0.67a,c 0.0a 9.3r N/A
Etidocaine 2.00a 94.0a N/A 7.7r

Fentanyl 3.60e 80.0a N/A 8.4r

Flunitrazepam 4.00a 78.0a N/A 1.8r

Fluoxetine 44.50a,b 94.0a N/A 10.06r

Gentamycin 0.28d 30.0d 13.3p 10p

Glutethimide 3.12a,c 54.0a 4.52r N/A
Griseofulvin 1.73c 80.0d N/A N/A
Haloperidol 15.84b,c 90.0a N/A 8.3r

Hetacillin 0.40d 20.0d 2.45p 4.97p

Ibuprofen 0.10a 99.0a 5.2r N/A
Imipramine 16.50a,b 90.0a N/A 9.5r

Indomethacin 0.95a,c 95.0a 4.5r N/A
Isoniazid 0.64c,d 15.0d 10.79r 3.52p

Kanamycin 0.19d 0.0d 12.9p 9.5p

Ketamine 4.00a 35.0a N/A 7.5r

Lidocaine 1.41n,c,g,h 70.0a N/A 7.86r

Lincomycin 0.33d 72.0d 12.91p 7.65r

Lorazepam 1.20a,c 90.0a 11.5r 1.3r

Maprotiline 21.00a,b 90.0a N/A 10.02r

Meprobamate 0.70a,c 20.0a 13.36r N/A
Meptazinol 5.47e 27.0a N/A 8.7r

Methacycline 0.97d 75.0d 3.5r 10.73p
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Table 1 (Continued )

Drug Vd ppb (%) pKa (acid) pKa (base)

Methadone 3.41a,c 90.0a N/A 8.25r

Methaqualone 6.00a 85.0a N/A 2.54r

Meticillin 0.36c,d 57.1d 2.8r −2.1p

Metoclopramide 3.00a 65.0a N/A 9r

Midazolam 1.30a,b 95.0a N/A 6.2r

Minocycline 0.75c,d 65.5d 5r 2.8r

Moclobemide 1.29i 50.0e N/A 6.89r

Morphine 2.86n,a,c,j 25.0a 9.26r 8.18r

Nafcillin 0.29d 90.0d 2.7r 11.91p

Naloxone 3.00a 40.0a N/A 7.94r

Neomycin(a) 0.01d *,d 12.93p 9.52p

Nitrazepam 2.24c,e 86.5a 10.8r 3.2r

Nitrofurantoin 0.32c 74.2d 7.1r −2.39p

Nortriptyline 20.50a,b 92.5a N/A 9.73r

Oxacillin 0.29c,d 92.0d 2.8r −3.4p

Oxazepam 0.99a,c,k,l 95.0a 11.1r 1.8r

Oxyphenbutazone 0.11a,c 99.0a 4.7r N/A
Oxytetracycline 1.89d 25.0d 3.27r 9.11r

Paracetamol 1.21c,e * 9.5r N/A
Paroxetine 23.25a,b 95.0a N/A 9.72r

PAS 0.23d 65.0d 3.92r 1.78r

Penicillin G 0.68c,d 65.0d 2.75r −1.3p

Penicillin V 0.70c,d 80.0d 2.8r −1.7p

Pethidine 5.03c,e 45.0a N/A 8.7r

Phenacetin 1.31c 30.0a N/A 2.2r

Phenazone 0.60c,e 10.0a N/A 1.4r

Phencyclidine 6.00a 72.5a N/A 8.5r

Phenethicillin K 0.35d 82.0d 12.54p −1.7p

Phenobarbital 0.80g,c 50.0a 7.4r N/A
Phenylbutazone 0.15a,c 99.0a 4.5r N/A
Phenytoin 0.60g,c 90.0a 8.33r N/A
Prazepam 1.50a 97.0a N/A 2.7r

Primidone 0.60a 20.0a 12.26r N/A
Propofol 3.50m 97.5a 11r N/A
Protriptyline 14.76a,c 92.0a N/A 10.61r

Pyrimethamine 2.19c 27.0d N/A 7.34r

Quinine sulfate 1.63d,c 70.0d 12.8p 9.28p

Rolietracycline 0.58d 50.0d 4.5p 11p

Salicylamide 0.15a,c 75.0a 8.2r N/A
Sertraline 20.00a 98.0a N/A 9.47r

Spectinomycin 0.12d * 9.25p 8.7r

Sulbenicillin 0.20c 70.0d 0.28p −1.97p

Sulfadiazine 0.92d 42.0d 6.56r 2r

Sulfadimethoxine 0.41d,c 94.5d 6.21p 1.3p

Sulfadoxine 0.12c 91.5d 5.82r 1.59p

Sulfaethidole 0.18d 99.0d 5.6r 1.9r

Sulfamerazine 0.39d,c 75.0d 5.6r 1.6p

Sulfameter 0.26c 90.1d 6.69p 1.54p

Sulfamethazine 0.61d 80.0d 7.38r 2.36r

Sulfamethizole 0.35c 62.0d 5.45r 2.2r

Sulfamethopyrazine 0.22c 68.0d 6.2r 1.95p

Sulfamethoxazole 0.22d,c 63.5d 5.8p 1.39p

Sulfamethoxypyridazine 0.19c 80.0d 7.19p 2.18p

Sulfinpyrazone 0.12c 92.0d 2.8r −0.66p

Sulfisomidine 0.32d 86.0d 7.5r 2.36r

Sulfisoxazole 0.17d,c 85.0d 4.83p 1.52p

Sulfisoxazole acetyl 1.19d 85.0d N/A −0.17p

Temazepam 0.98b,a 97.0a N/A 1.6r

Tetracycline 1.40d,c 45.3d 3.3r 11.02p

Theobromine 0.75a * 10.05r N/A
Tinidazole 0.39c * N/A 1.82r

Tramadol 3.00a 5.0a N/A 8.3r

Triazolam 1.10b 78.0a N/A 8.19r
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Table 1 (Continued )

Drug Vd ppb (%) pKa (acid) pKa (base)

Trimethoprim 2.40d,c 70.0d N/A 7.12r

Valproic acid 0.17n,a,b 90.0a 5r N/A
Viloxazine 1.00a 86.5a N/A 8.1r

a Data taken from Moffat et al. (1986).
b Taken from Perry (2002).
c Taken from Ritschel and Hammer (1980).
d Taken from Ritschel (1976).
e Taken from Durnas et al. (1990).
f Taken from Raaflaub and Speiser-Courvoisier (1974).
g Taken from Lam et al. (1997).
h Taken from Nattell et al. (1987).
i Taken from Schoerlin et al. (1990).
j Taken from Glare and Walsh (1991).
k Taken from Sonne et al. (1988).
l Taken from Greenblatt (1981).

m Taken from Fulton and Sorkin (1995).
n Taken from Ritschel et al. (1995).
p Calculated values by ACD/log D software.
r Values from database.
* Data missing.

2.3. Development of QSPRs

All the structural descriptors were standardized by making
the range between 0 and 1. Stepwise regression analysis was
used to determine statistically significant relationships between
structural parameters and the volume of distribution. The statis-
tical analysis was performed using the MINITAB (release 13.1)
statistical software. Because of the large number of descriptors,
it is possible that the stepwise regression falls into local minima.
Therefore, genetic algorithm was used for the reduction of the
number of descriptors prior to further stepwise regression anal-
yses. Thus, feature selection was performed in STATISTICA
Neural Networks (version 6) using cross over rate of 1, muta-
tion rates of 0.1 and 0.5, number of populations of 1000, and
number of generations of 500. The unit penalty (factor that is
multiplied by the number of selected input variables, and added
to the selection error leading to reduced number of selected vari-
ables) was set to 0.01 or 0.001.

To avoid the risk of chance correlations, loss of interpretabil-
ity and predictability, the number of parameters in the models
was kept as low as possible. Accordingly, the stepwise was
cut short when addition of the seventh or eighth parameter did
not add to the interpretability and predictability of the models.
QSPRs were sought for the whole dataset and also for the acidic
and basic drugs separately. A compound was allocated to the
acidic group of drugs if the fraction ionized as an acid (anionic
f
(
g
i
c
e
e
e
f
g

were excluded one at a time from the MLR analysis as the test
set and the corresponding Vd values were computed using the
QSPR obtained for the rest of the chemicals (training set). Fold
error of prediction for the test sets was calculated according to
Eq. (7) and the mean values were reported.

Fold error = antilog(| log Vdobs − log Vdpred |) (7)

The following statistical details of the models were noted: n,
the number of observations; r, the correlation coefficient; s, the
standard deviation; F, the Fisher statistic and the P value. The
figures in parentheses with the regression coefficients were stan-
dard errors of coefficients.

3. Results

The apparent volume of distribution (Vd) and the extent of
protein binding for the compounds used in this study are listed
in Table 1, together with the relevant references. Also included
in the table are pKa values from ACD labs database or the cal-
culated values. Drugs used in the study covered a wide range of
chemical and pharmacological classes with the Vd values rang-
ing from 0.1 to 112.4 L kg−1. Stepwise regression and genetic
algorithm led to a number of significant QSPR models from
which three models were selected for all drugs, bases and acids
based on the R2 and standard deviation as well as the quality
a
e
e
a
l
c

3

c

raction, fiA) was higher than the fraction ionized as a base
cationic fraction, fiB) at pH 7.4 and was allocated to the basic
roup if fiB was higher than fiA. While deletion of outliers often
mproves the statistics of a QSPR, it was decided to keep all the
ompounds in the study, unless they affected the coefficients of
quations significantly. To test the predictive power of the mod-
ls, the dataset was divided into the four equal groups. To this
nd, the data were ranked based on the ascending Vd values and
rom every four compounds one was assigned to one of the four
roups. Each of the groups (containing quarter of the chemicals)
nd interpretability of the descriptors in the models. The mod-
ls have been presented below. One of drugs, neomycin was
xcluded from the analyses. The reason was that neomycin is
natural antibiotic that can occur in one of the three molecu-

ar structures of type A, B and E, with the marketed product
ontaining a mixture of various percentages of these.

.1. All drugs

Stepwise regression analysis led to a QSPR from which
hloroquine was outlier. Chloroquine has an extremely high Vd
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Fig. 1. The plot of squared log P vs. log P for acid and base drugs.

value of 112.4, although its inclusion does not deteriorate the
statistics of the QSPR, it has a large influence on the coefficients
of the equation. The exclusion of this chemical resulted in the
following QSPR:

log Vd = − 1.82(±0.26) − 0.448(±0.07)fiA

+ 0.482(±0.08)fiB + 0.579(±0.15)(log P)2

+ 1.30(±0.25)SsssCH + 0.694(±0.16)Lipole

+ 0.764(±0.27)SsF − 0.533(±0.23)ESP−,

n = 125, s = 0.317, r2 = 0.747, F = 49.4 (8)

Missing log P value for cephaloridine and missing Lipole value
for sulbenicillin together with the two excluded drugs (neomycin
and chloroquine) has reduced the number of chemicals to
125.

In Eq. (8) fiA and fiB are fractions of the drug ionized at
pH 7.4 as acids and bases respectively, (log P)2 is the square of
logarithm of partition coefficient calculated by ACD/log D suite,
SsssCH is the atom type electrotopological state index for CH–
groups, Lipole is the total lipole of the molecule calculated by
TSAR, SsF is atom type electrotopological state index for –F
groups, ESP− is the absolute most negative electrostatic poten-
tial on the solvent accessible surface of the molecule. The neg-
ative coefficient of fiA and the positive coefficient of fiB in the
Q
i
t
t
a
i
i
l
i
a
s
t
a
t
s
a
V
i

Fig. 2. Plot of observed log Vd vs. the values calculated by Eq. (8); (©) bases
and (�) acids.

ues by Eq. (8) at Fig. 2 where acids have a smaller range of Vd
values. In case of SsssCH, it was observed that drugs such as
antibiotics kanamycin and gentamycin (Fig. 3), having a lower
number of >CH- groups, possess low values of SsssCH. These
are molecules with higher percentages of heteroatoms, oxygen
and nitrogen resulting in the high hydrophilicity. Total lipole
is a measure of lipophilic distribution in the molecule that is
calculated from summed atomic log P values.

Incorporation of plasma protein bound fraction (ppb) resulted
in a similar QSPR where ESP− was no longer significant:

log Vd = −1.38(±0.23) − 0.472(±0.07)fiA

+ 0.460(±0.08)fiB + 0.762(±0.17)(log P)2

+ 1.38(±0.24)SsssCH + 0.645(±0.15)Lipole

+ 0.881(±0.26)SsF − 0.280(±0.12)ppb,

n = 119, s = 0.305, r2 = 0.769, F = 52.7 (9)

Eq. (9) shows the negative effect of ppb on the volume of distri-
bution of drugs.

3.2. Acids

For acids the best QSPR, in terms of R2 and s, was obtained
from stepwise regression analysis on a reduced set of 88 descrip-
t
r

l

l
d

m
N

SPR show that ionization to anions reduces the Vd but base ion-
zation to cation enhances the volume of distribution. Although
he parameters of (log P)2, SsssCH and lipole (all with posi-
ive coefficients) could be regarded as lipophilicity parameters,
closer inspection of the parameters reveals also other structural

nformation within the parameters. One particular debatable
ssue is the use of squared partition coefficient, rather than the
og P. This could be due to lower (log P)2 values of acidic drugs
n comparison with bases. Fig. 1 shows the plot between (log P)2

nd log P where acids and bases have been delineated. It could be
een in the figure that acids have lower log P and (log P)2 values
han most bases but the difference between the (log P)2 values
re more significant. Therefore, it seems reasonable to assume
hat the preference of (log P)2 over log P by statistical analy-
is could be due to the lower Vd values of acidic drugs. Acids
re known to be highly protein bound in plasma with reduced
d values (Karalis et al., 2002). This could also be observed

n the scattered plot of log Vd versus the predicted log Vd val-
ors obtained from feature selection by genetic algorithm. The
esulting QSPR is as follows:

og Vd = −0.655 + 1.01(±0.15)N6-rings

− 0.289(±0.097)fiA + 0.558(±0.16)7χch

− 1.12(±0.43)SsssN + 0.726(±0.32) log D7.4,

n = 69, s = 0.268, r2 = 0.554, F = 15.6 (10)

og D7.4 is not available for cephaloridine, therefore cephalori-
ine is excluded from Eq. (10).

In Eq. (10) the negative coefficient of fiA shows the detri-
ental effect of acid ionization on the volume of distribution.
6-rings is the number of six membered aliphatic rings with the
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Fig. 3. Molecular structures of some of drugs in the study.

higher values corresponding to tetracyclines. Two examples of
these drugs are oxytetracycline and demeclocycline which have
a relatively high Vd values compared to other acidic drugs (see
Fig. 3 for the molecular structures). 7χch is the seventh order
chain connectivity index with higher values corresponding to
benzodiazepines such as nitrazepam and bromazepam (Fig. 3).
SsssN is the atom type electrotopological state index for tertiary
amine groups. The negative coefficient of SsssN in the equa-
tion shows that presence of these base groups will result in the
reduced Vd values. Examples of such drugs are sulfinpyrazone
and oxyphenbutazone (Fig. 3). Fig. 4 is plot of log Vd versus the
log Vd values predicted by Eq. (10) for acids.

3.3. Bases

The following six-parameter QSPR was the best equation
resulted from stepwise regression analyses:

log Vd = −1.32(±0.51) − 2.69(±0.42) log

(
fu

pKa

)

− 1.17(±0.31)ESP− + 2.95(±0.70)µ

− 1.27(±0.40)NOH − 2.21(±0.46)ABSQon

+ 1.94(0.37) 1κa,

n = 55, s = 0.290, r2 = 0.825, F = 37.6 (11)
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Fig. 4. Plot of observed log Vd vs. log Vd calculated by Eq. (10) for acids.

Griseofulvin and sulfisoxazole acetyl have missing log(fu/pKa)
values, therefore they are not included in Eq. (11).

In Eq. (11) log(fu/pKa) is the logarithm of unionized fraction
of drugs at pH 7.4 divided by the pKa of the base, µ the dipole
moment, NOH the number of hydroxyl groups, ABSQon is sum
of the atomic charges on nitrogen and oxygen atoms and 1κa
is the first order kappa alpha shape index. Fig. 5 is the plot of
observed against calculated log Vd for bases.

In order to explain the effect of log(fu/pKa) the relationship
between log(fu/pKa) and pKa have been presented in Fig. 6.
The plot shows that for weak bases with the standardized pKa
values lower than about 0.7, an increase in pKa values results
in a slight reduction of the parameter log(fu/pKa). On the other
hand, for strong bases the correlation has a high negative slope.
Therefore, Eq. (11) shows that volume of distribution is directly
related to the pKa values of strong bases, however in case of the
weak bases with pKa values lower than about 7, Vd is not so
much affected by the pKa. The parameters with negative effect
are the absolute most negative electrostatic potentials on the
molecular surface, number of hydroxyl groups and sum of the
atomic charges on nitrogen and oxygen atoms. All these can
represent hydrogen bonding abilities of the molecule (Dearden
and Ghafourian, 1999), and therefore in Eq. (11) they reveal the
negative effect of hydrogen bonding on Vd of bases. The positive

F

Fig. 6. Plot between log(fu/pKa) and pKa for bases.

coefficient of µ indicates the necessity of a dipolar feature in the
molecule, which is possibly required for membrane transport,
leading to higher Vd values. The other parameter with a positive
effect is 1κa. Although it is considered to be a shape parameter,
for this dataset it is highly correlated with size parameters such
as 0χ, surface area, and molar volume. In addition, 1κa and the
parameter ABSQon can explain 74% of variation in log P and
the presence of both parameters in Eq. (11) could indicate the
effect of lipophilicity.

Extent of protein binding (pbb) is not selected by the step-
wise regression and forcing the pbb parameter in the regression
analysis does not lead to a significant QSPR.

3.4. Validation of the QSPR models

QSARs were obtained for training sets using the descriptors
of Eqs. (8)–(11) (see Appendix B) and they were used to pre-
dict Vd values for drugs within the four test sets described in the
methods section. Mean fold error of prediction (MFE) and R2

pred
(correlation coefficient between observed and predicted Vd val-
ues) are presented in Table 2. Moreover, two alternative QSPR
models for acids and bases (Eqs. (12) and (13) respectively)
were also used and validated for the prediction of Vd values.
The equations were used both, on their own and in a consensus
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f
ig. 5. Plot of observed log Vd vs. log Vd calculated by Eq. (11) for bases.
able 2
ean fold prediction error and the squared correlation coefficient between

bserved and predicted Vd values using QSPR models (8)–(13), and the consen-
us prediction

rediction model R2
pred MFE Accuracya

All Acids Bases

q. (8) 0.699 2.11 2.19 2.11 66.7
q. (9) 0.716 2.08 2.01 2.17 62.2
q. (10) 0.488 – 1.79 – 71.0
q. (11) 0.785 – – 1.93 64.3
q. (12) 0.470 – 1.84 – 71.0
q. (13) 0.694 – – 2.18 58.9

onsensus 0.795 1.83 1.79 1.89 72.2

a Percent of the total number of drugs that are predicted with less than two
old error.
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prediction procedure, where the log Vd values predicted by Eqs.
(8)–(13) were averaged (Table 2).

log Vd = −0.572(±0.22) + 0.598(±0.12)N6-rings

− 1.43(±0.44)SsssN − 0.487(±0.09)fiA

+ 0.542(±0.26)Pol − 0.419(±0.19)SaaN

+ 0.572(±0.29)
MV

TA
,

n = 68, s = 0.266, r2 = 0.575, F = 13.8 (12)

log Vd = 1.21(±0.61) − 2.75(±0.49) log

(
fu

pKa

)

+ 0.776(±0.33)ESP− + 2.59(±0.76)µ

− 1.09(±0.33)NOH + 1.31(±0.32) log P,

n = 55, s = 0.333, r2 = 0.763, F = 31.5 (13)

4. Discussion

Volume of distribution is an important pharmacokinetic prop-
erty that needs to be determined during drug development pro-
cess. It is normally estimated using animal scaling which is
a
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of affinity profiles to various body tissues and plasma proteins.
Therefore, several drugs with equal affinities to plasma proteins
can have different affinities to various body tissues resulting in
differing values of Vd (Urien et al., 2001). It must also be noted
that although model (8) lacks plasma protein binding parameter,
it has benefited from parameters that distinguish acids and bases
(namely fiA, fiB and (log P)2) and the low Vd values of acids in
comparison with bases could be related to the high ppb of acids
like NSAIDs.

In a previous QSPR study we compared the unbound Vd
and the Vd in terms of the prediction power of the resulting
model and concluded that Vd, although leading to an inferior
QSPR in terms of fit, resulted in QSPRs with higher predictive
power (Ghafourian et al., 2004). In fact, the higher correlation
coefficient observed for the QSPRs using the unbound Vd as
the dependent variable could be due to a broader range of the
unbound Vd in comparison with the Vd. The use of unbound
Vd in QSPR has also been criticized by Davis et al. (2000) on
the basis that protein binding itself is related to the structural
parameters, such as partition coefficient, which are commonly
used in the QSAR models.

Table 2 shows that prediction powers of the separate QSPRs
for acids and bases (Eqs. (10) and (11)) are greater than the
universal QSPRs. This is especially remarkable in case of acids
for which R2 and R2

pred of the models (Eqs. (10) and (12)) are
much lower than that of the models for bases or all drugs. This
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ssociated with certain levels of error (Mahmood, 1998). QSPR
echnique can offer an alternative method for the estimation,
specially in early stages of drug development. One particular
imitation of QSPR could be the narrow range of applicability
hich arises from the limited chemical space covered by the

raining set. In this study, a broad range of drugs have been
mployed to derive statistically significant QSPRs (see Fig. 3
or some examples). We have mined the literature extensively
or volume of distribution, and assembled a dataset of 129 com-
ounds comprising neutral, basic and acidic drugs. Moreover,
rigorous validation procedure involving four cycles of leave-
5%-out validation, where each chemical was out once resulted
n a better knowledge about the prediction capabilities of the

odels. Table 2 shows that it is possible to predict Vd of all
rugs without separating acids and bases with the mean predic-
ion errors of 2.11 and 2.08 folds for Eqs. (8) and (9) respectively.
n other words, knowledge of extent of plasma protein binding
nly slightly improved the prediction of Vd. Also note that ppb
as not a significant parameter in the QSPR analyses of sep-

rate groups of acids and bases. This is despite the common
ractice that views the unbound (intrinsic) Vd (volume of dis-
ribution divided by the non-protein bound fraction) as a better
SPR endpoint than the Vd (Ritschel et al., 1995; Ritschel and
ammer, 1980; Blakey et al., 1997). The concept of unbound
d originates from the fact that distribution of a compound in

he human body is related to the extent of binding in tissues ver-
us the extent of binding in plasma (Rowland and Tozer, 1995).
hus, plasma protein binding can limit the concentration of drug
vailable for distribution in vivo (Urien et al., 2001). The lack of
linear relationship between Vd and plasma protein binding is

onceivable as the observed Vd value results from a summation
s probably due to the narrow range of Vd values for acids.
urthermore, the average predicted Vd values by all the mod-
ls (Eqs. (8)–(13)), i.e. consensus modeling, have the smallest
FE level as well as the highest percent of drugs predicted
ithin two-fold error range. A further analysis of the fold errors

ndicates a high estimation error of Vd values for some drugs
sing any of the presented models. These drugs do not belong
o a particular chemical group or to a specific Vd range. The
rugs associated with high prediction errors include ibupro-
en, glutethimide, acetanilide, bupivacaine, methaqualone and
upropione, with minimum fold errors in the range of 3–4.8.
able 3 is the observed and predicted Vd values by different
odels, with the predicted values with minimum deviation for

ach drug highlighted in bold.
In order to further test the validity of our proposed models, the

d values were predicted for some drugs the Vd data for which
as collected from the literature (Cutler et al., 1978; Barbeau

nd Belanger, 1982; Klinge et al., 1982; Lombardo et al., 2004).
hese drugs were not included in any of the original analyses.
able 4 is the results of this external validation together with the
bserved Vd data. The table shows that QSAR model (8) predicts
he external validation set very well with average fold error of
.68. On the other hand, equations for acids ((10) and (12))
erform particularly badly in prediction of Vd for steroid group
prednisone, dexamethasone, hydrocortisone and prednisolone).
his could be due to a limited chemical space of the drugs used

or the development of this equation which results in a small
pplicability domain. The prediction of these equations is good
or the other drugs with mean fold error values of 1.60 and 1.92
or Eqs. (10) and (12), respectively. Mean fold error of prediction
or Eq. (9) is 1.86.
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Table 3
The Vd values predicted by models (8)–(12) for acidic and basic drugs in test sets; the test sets in which the drugs were predicted have been outlined

Drug Vdobs Vdpred Acid or base Test set code

(8) (9) (10) (11) (12) (13)

Amobarbital 1.05 0.958 0.874 1.328 1.518 Acid b
Amoxicillin 0.85 0.301 0.425 0.277 0.248 Acid b
Ampicillin 0.613 0.345 0.545 0.306 0.269 Acid z
Bromazepam 1.13 0.873 1.132 2.149 0.876 Acid z
Caffeine 0.55 0.434 0.631 0.598 0.398 Acid z
Carbamazepine 1.2 0.905 1.172 1.846 1.328 Acid b
Carbenicillin 0.25 0.178 0.193 0.253 0.340 Acid t
Cefazolin 0.165 0.470 0.406 0.345 0.119 Acid t
Cephalexin 0.34 0.378 0.557 0.332 0.453 Acid z
Cephaloridine 0.23 Acid z
Cephalothin 0.415 0.251 0.275 0.330 0.474 Acid b
Cephradine 0.44 0.508 0.704 0.839 0.795 Acid x
Chloral hydrate 0.6 0.652 0.587 0.635 0.548 Acid z
Chloramphenicol 0.57 0.647 0.539 0.718 1.213 Acid t
Clobazam 1.12 0.962 0.838 0.672 0.633 Acid x
Clonazepam 3.127 2.105 1.609 1.782 2.334 Acid b
Clorazepate 0.915 0.505 0.461 0.588 0.957 Acid z
Cloxacillin 0.15 0.289 0.261 0.307 0.261 Acid b
Cyclacillin 0.4 0.346 0.512 0.664 0.434 Acid z
Demeclocycline 1.79 0.954 0.725 1.220 1.294 Acid x
Dicloxacillin 0.13 0.358 0.288 0.368 0.296 Acid t
Doxycycline 0.739 0.765 0.874 1.189 1.263 Acid b
Ethclorvynol 2.5 0.875 0.697 0.722 0.733 Acid z
Ethosuximide 0.665 0.875 1.169 0.677 0.962 Acid b
Glutethimide 3.115 0.441 0.417 0.686 0.569 Acid b
Hetacillin 0.4 0.322 0.617 0.173 0.150 Acid x
Ibuprofen 0.1 0.557 0.609 0.376 0.483 Acid x
Indomethacin 0.945 0.584 0.449 0.261 0.418 Acid b
Isoniazid 0.64 0.775 1.056 0.560 0.626 Acid t
Lorazepam 1.203 0.624 0.653 0.744 1.400 Acid x
Meprobamate 0.7 1.303 1.921 0.783 0.886 Acid t
Methacycline 0.97 0.729 0.508 1.303 1.386 Acid x
Meticillin 0.36 0.211 0.256 0.258 – Acid x
Minocycline 0.745 0.405 0.440 0.664 0.618 Acid x
Nafcillin 0.29 1.467 1.559 0.394 0.376 Acid z
Nitrazepam 2.235 1.224 0.926 2.313 1.108 Acid z
Nitrofurantoin 0.32 0.391 0.434 0.263 0.254 Acid b
Oxacillin 0.29 0.372 0.293 0.278 0.239 Acid x
Oxazepam 0.992 2.017 1.703 0.852 1.514 Acid t
Oxyphenbutazone 0.11 0.364 0.233 0.157 0.169 Acid z
Oxytetracycline 1.89 0.672 1.096 0.984 1.223 Acid z
Paracetamol 1.205 0.629 0.545 0.657 Acid z
PAS 0.23 0.384 0.707 0.389 0.321 Acid x
Penicillin G 0.675 0.315 0.323 0.261 0.293 Acid x
Penicillin V 0.7 0.396 0.304 0.306 0.290 Acid z
Phenethicillin K 0.348 1.276 1.076 0.712 0.391 Acid t
Phenobarbital 0.795 0.778 0.710 1.135 0.991 Acid t
Phenylbutazone 0.154 0.484 0.373 0.139 0.138 Acid x
Phenytoin 0.6 0.825 0.654 0.628 1.150 Acid x
Primidone 0.6 0.921 1.382 1.425 0.986 Acid t
Propofol 3.5 2.415 2.200 0.920 1.064 Acid x
Salicylamide 0.145 0.981 0.736 0.657 0.640 Acid b
Sulbenicillin 0.2 0.199 0.312 Acid x
Sulfadiazine 0.92 0.245 0.275 0.285 0.205 Acid t
Sulfadimethoxine 0.407 0.252 0.159 0.323 0.218 Acid t
Sulfadoxine 0.12 0.238 0.173 0.269 0.290 Acid z
Sulfaethidole 0.176 0.185 0.192 0.280 0.275 Acid z
Sulfamerazine 0.385 0.234 0.200 0.291 0.190 Acid t
Sulfameter 0.26 0.246 0.204 0.294 0.264 Acid b
Sulfamethazine 0.61 0.463 0.350 0.455 0.401 Acid x
Sulfamethizole 0.35 0.170 0.199 0.239 0.211 Acid b
Sulfamethopyrazine 0.22 0.291 0.224 0.321 0.206 Acid t
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Table 3 (Continued )

Drug Vdobs Vdpred Acid or base Test set code

(8) (9) (10) (11) (12) (13)

Sulfamethoxazole 0.22 0.231 0.240 0.282 0.306 Acid z
Sulfamethoxypyridazine 0.19 0.234 0.250 0.389 0.324 Acid t
Sulfinpyrazone 0.12 0.410 0.302 0.171 0.308 Acid t
Sulfisomidine 0.316 0.354 0.297 0.406 0.404 Acid t
Sulfisoxazole 0.165 0.221 0.194 0.242 0.251 Acid b
Tetracycline 1.395 1.371 1.704 1.086 1.246 Acid t
Theobromine 0.75 0.479 0.724 0.512 Acid z
Valproic acid 0.172 0.378 0.327 0.346 0.419 Acid x
Acetanilide 0.161 0.749 0.425 0.800 Base z
Alprazolam 0.86 1.074 1.836 0.559 0.971 Base x
Amitriptyline 10.643 13.682 11.502 15.366 14.461 Base t
Amphetamine 3.91 2.920 3.560 2.810 5.364 Base t
Bupivacaine 1 4.146 3.997 3.601 3.632 Base x
Bupropion 16.1 2.665 2.408 4.067 3.297 Base t
Butorphanol 5 3.416 4.627 3.305 6.872 Base t
Chlordiazepoxide 0.363 1.077 0.920 0.835 0.611 Base z
Chloroquine 112.4 9.210 10.597 40.764 29.384 Base b
Chlorphentermine 2.5 4.587 5.359 7.211 Base x
Chlortetracycline 1.61 1.769 1.889 1.429 1.430 Base z
Clindamycin 1 0.404 0.479 0.731 0.375 Base z
Clomipramine 17 28.628 29.235 24.948 28.838 Base x
Desipramine 30.25 9.637 8.029 12.979 14.624 Base z
Diazepam 1.92 1.461 1.335 3.075 1.352 Base t
Doxepine 12.7 5.933 5.199 4.602 4.248 Base b
Ethambutol 1.335 1.754 3.196 0.505 0.438 Base z
Etidocaine 2 2.381 3.010 2.437 2.139 Base b
Fentanyl 3.6 3.705 4.662 11.918 5.133 Base z
Flunitrazepam 4 1.336 1.386 5.181 1.693 Base x
Fluoxetine 44.5 186.16 183.01 33.689 17.218 Base t
Gentamycin 0.28 0.213 0.696 0.295 0.414 Base b
Griseofulvin 1.73 1.215 1.515 Base b
Haloperidol 15.84 4.182 5.562 6.109 2.121 Base z
Imipramine 16.5 11.797 10.156 11.047 12.013 Base b
Kanamycin 0.19 0.095 0.483 0.100 0.150 Base b
Ketamine 4 1.175 2.044 0.894 0.884 Base z
Lidocaine 1.408 2.238 2.661 1.675 1.730 Base b
Lincomycin 0.33 0.607 0.435 0.169 0.229 Base x
Maprotiline 21 13.928 12.400 16.508 16.958 Base b
Meptazinol 5.47 5.220 5.946 4.344 4.776 Base b
Methadone 3.41 7.121 6.982 10.779 5.678 Base b
Methaqualone 6 0.873 1.064 1.295 1.740 Base z
Metoclopramide 3 1.305 2.451 1.986 2.055 Base z
Midazolam 1.3 3.822 4.645 2.199 1.956 Base b
Moclobemide 1.29 1.905 2.027 1.241 0.872 Base t
Morphine 2.855 1.934 2.192 0.851 1.126 Base t
Naloxone 3 1.641 1.926 3.091 3.393 Base t
Neomycin 0.009 Base b
Nortriptyline 20.5 18.724 20.018 13.405 22.654 Base t
Paroxetine 23.25 13.489 9.191 40.325 30.541 Base x
Pethidine 5.03 3.368 3.979 2.090 2.282 Base b
Phenacetin 1.31 0.820 1.141 0.982 1.449 Base x
Phenazone 0.6 0.852 0.903 1.767 1.367 Base b
Phencyclidine 6 12.173 12.310 8.674 12.183 Base x
Prazepam 1.5 4.193 6.195 1.874 4.116 Base x
Protriptyline 14.763 20.107 19.830 29.284 39.200 Base x
Pyrimethamine 2.19 2.875 3.840 1.242 2.388 Base x
Quinine sulfate 1.63 4.562 4.536 3.863 5.145 Base t
Rolietracycline 0.58 0.549 0.585 Base b
Sertraline 20 17.744 11.756 24.849 18.324 Base z
Spectinomycin 0.12 0.924 0.129 0.822 Base x
Sulfisoxazole acetyl 1.19 0.644 0.530 2.265 0.743 Base t
Temazepam 0.975 0.846 0.789 1.287 1.017 Base z
Tinidazole 0.39 0.691 – 0.204 1.457 Base b
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Table 3 (Continued )

Drug Vdobs Vdpred Acid or base Test set code

(8) (9) (10) (11) (12) (13)

Tramadol 3 3.736 5.250 3.200 2.977 Base x
Triazolam 1.1 2.812 4.312 1.603 1.639 Base b
Trimethoprim 2.4 1.053 0.887 1.783 1.321 Base t
Viloxazine 1 3.499 2.024 1.429 1.303 Base t

Table 4
Results of Vd prediction for drugs that were not included in the original analyses together with the observed Vd from literature; values in the parentheses are fold
error of prediction

Drug Vdobs pKa Vdpred Acid or base

(8) (9) (10) (11) (12) (13)

Flucytosine 0.68a 10.87 0.568 (1.20) 1.396 (2.05) 0.801 (1.18) 1.022 (1.50) Acid
Nalidixic acid 0.51b 3.45 0.247 (2.06) 0.317 (1.61) 0.261 (1.95) Acid
Methenamine 0.56c 6.30 1.058 (1.89) 0.348 (1.61) 1.641 (2.93) Base
Phenobarbital 0.88d 7.36 0.661 (1.33) 0.621 (1.42) 1.091 (1.24) 1.060 (1.20) Acid
Prednisone 0.97d 12.39 1.460 (1.51) 7.246 (7.47) 6.554 (6.76) Acid
Dexamethasone 1.14d 12.14 2.107 (1.85) 7.532 (6.61) 7.004 (6.14) Acid
Hydrocortisone 0.44d 12.48 0.839 (1.91) 7.116 (16.2) 6.731 (15.3) Acid
Prednisolone 0.52d 12.47 1.206 (2.32) 1.362 (2.62) 7.171 (13.8) 6.495 (12.5) Acid
Salicylic acid 0.17d 2.98 0.260 (1.53) 0.262 (1.54) 0.239 (1.41) Acid
Theophylline 0.57d 8.54 0.687 (1.21) 0.769 (1.35) 0.235 (2.42) 0.160 (3.56) Acid

a Vd value from Cutler et al. (1978).
b Average of the Vd values reported in Barbeau and Belanger (1982) for nalidixic acid.
c Vd value from Klinge et al. (1982).
d Values reported in Lombardo et al. (2004).

The mean fold error of prediction values obtained from inter-
nal (Table 2) and external validation (Table 4) of QSPR models
(8) and (9) for all drugs, and model (11) for bases are within the
range of prediction errors using the interspecies scaling (reported
to be in the range 1.56–2.78 folds (Obach et al., 1997)). For
another prediction method based on the prediction of the frac-
tion unbound in tissues using two experimentally determined
physicochemical parameters, the fraction of compound ionized
at pH 7.4, and the fraction of free drug in plasma, Lombardo et
al. (2004) reported a training set MFE of 2.08 for Vd. The model
worked well in the leave-class-out prediction with the MFE for
classes being between 1.26 and 2.51. In comparison, the perfor-
mance of model (8) is particularly good as it does not require
any experimental measurement.

In the present QSPR approach we decided to use a simple
multiple regression approach. Although increasing the complex-
ity of the model, e.g. the use of non-linear techniques and/or
a higher number of the descriptors, might improve the statis-
tics of the models, the improvement will be associated with
either complication or loss of the interpretability. The structural
descriptors used in the QSPR models can be explained based
on the previous understanding of the mechanisms involved and
the chemical structures of the drugs. These also agree with our
previous QSPR findings as follows. Models (8)–(11) all contain
lipophilicity terms that are required for membrane transport.
These are (log P)2 and lipole in Eq. (8) and (9), log D in Eq.
(
e
a

indicates that base ionization to cations increases the Vd while
acid dissociation reduces the Vd. This can be deduced from the
positive coefficients of fiB in Eqs. (8) and (9), the negative coef-
ficient of log(fu/pKa) in Eq. (11), and the negative coefficients of
fiA in Eqs. (8)–(10). This could be due partly to the high protein
binding of most acidic drugs. Karalis et al. (2002) observed that
in a class of compounds with higher volume of distribution, the
acid/base ratio was lower, whereas protein-binding extent was
highest in the class with the lowest volume of distribution.

Hydrogen bonding parameters are also present in these mod-
els. The need for hydrogen bonding parameter in order to model
membrane transport is very well established both as a correction
to lipophilicity-based models (Feher et al., 2000) and in solva-
tochromic approaches (Abraham et al., 1999). As explained in
the results section, other structural parameters present in the
QSPR models point to more precise molecular features such
as shape of the molecules and presence of specific functional
groups.

5. Conclusion

Apparent volume of distribution for drug entities belonging to
different chemical classes was studied using a QSPR approach.
Some of the suggested QSPR models resulted in encouragingly
low prediction errors. The errors were within the range of more
complicated prediction methods such as interspecies scaling and
a
e
d

7.4
10) and 1κa in Eq. (11). The other important feature of the mod-
ls is the incorporation of ionized fractions of acids and bases
t physiologic pH value. This is consistent in all the models and
method requiring experimentally determined parameters, e.g.
xtent of plasma protein binding. Furthermore, the structural
escriptors used in the models can be interpreted based on the
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mechanisms involved in distribution process and the molecular structures of the drugs. These are fractions ionized to anions or
cations, partition (or apparent distribution) coefficient, hydrogen binding parameters, and some atom type electrotopological state
indexes indicating the presence of certain atomic groups in the molecular structures. The model could find use in novel drug design
and high throughput screening laboratories.
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Appendix A. Correlation matrix for descriptors of Eqs. (8)–(13)

Descriptors of Eqs. (8) and (9) for all the drugs:

fiA fiB SsssCH SsF ESP− (log P)2 Lipole

fiB −0.265
SsssCH −0.164 −0.252
SsF −0.156 0.116 0.075
ESP− −0.214 0.088 0.184 0.022
(log P)2 −0.348 0.428 0.219 0.143 0.244
Lipole 0.197 0.354 −0.215 0.102 −0.143 0.181
ppb −0.002 −0.09 0.301 0.138 −0.002 0.423 0.082

Descriptors of Eqs. (10) and (12) for acids:

N6-ring fiA 7χch SsssN Pol SaaN

fi
7

S
l
P
S
M

E
D
N
A
1

l

A

T

T

T

A 0.212
χch −0.277 0.004
sssN 0.327 0.414 0.209

og D7.4 −0.583 −0.568 −0.041 −0.462
ol 0.349 0.465 0.070 0.442
aaN −0.176 0.171 −0.162 −0.189 0.033
V/TA −0.123 0.162 0.256 0.042 0.205 −0.128

Descriptors of Eqs. (11) and (13) for bases:

log(fu/pKa) ESP− Dipole NOH ABSQon 1κa

SP− −0.229
ipole 0.156 −0.195

OH −0.287 −0.228 0.309
BSQon −0.12 −0.308 0.498 0.856
κa −0.31 −0.422 0.343 0.723 0.729
og P −0.157 0.243 −0.379 −0.632 −0.771 −0.334

ppendix B. Equations for training sets

Structural descriptors from Eq. (8):

est set b excluded : log Vd = −1.85 − 0.497fiA + 0.480 fiB + 0.528(log P)2 + 1.26SsssCH + 0.724Lipole + 0.744SsF

+ 0.660ESP−, n = 110, s = 0.310, r2 = 77.0%, F = 48.9

est set t excluded : log Vd = −1.76 − 0.488 fiA + 0.401 fiB + 0.592(log P)2 + 1.23SsssCH + 0.845Lipole + 0.713SsF

+ 0.550ESP−, n = 107, s = 0.322, r2 = 0.750, F = 42.4

est set x excluded : log Vd = −1.61 − 0.479 fiA + 0.514 fiB + 0.639(log P)2 + 1.17SsssCH + 0.662Lipole + 0.559SsF

+ 0.397ESP−, n = 111, s = 0.314, r2 = 0.740, F = 42.0



T. Ghafourian et al. / International Journal of Pharmaceutics 319 (2006) 82–97 95

Test set z excluded : log Vd = −1.88 − 0.447fiA + 0.427fiB + 0.523(log P)2 + 1.26SsssCH + 0.779Lipole

+ 0.666SsF + 0.668ESP−, n = 112, s = 0.301, r2 = 0.757, F = 46.3

Structural descriptors from Eq. (9):

Test set b excluded : log Vd = −1.36 − 0.528fiA + 0.477fiB + 0.674(log P)2 + 1.34SsssCH + 0.640Lipole + 0.860SsF

− 0.00227ppb, n = 104, s = 0.301, r2 = 0.786, F = 50.4

Test set t excluded : log Vd = −1.32 − 0.536fiA + 0.376fiB + 0.758(log P)2 + 1.33SsssCH + 0.835Lipole + 0.821SsF

− 0.00302ppb, n = 101, s = 0.307, r2 = 0.774, F = 45.5

Test set x excluded : log Vd = −1.33 − 0.489fiA + 0.439fiB + 0.873(log P)2 + 1.34SsssCH + 0.669Lipole + 0.644SsF

− 0.00306ppb, n = 107, s = 0.307, r2 = 0.758, F = 44.2

Test set z excluded : log Vd = −1.41 − 0.457fiA + 0.437fiB + 0.725(log P)2 + 1.41SsssCH + 0.689Lipole + 0.833SsF

− 0.00322ppb, n = 107, s = 0.295, r2 = 0.771, F = 47.6

Structural descriptors from Eq. (10) for acids:

Test set b excluded : log Vd = −0.454 + 0.951N6-rings − 0.405fiA + 0.5517χch − 0.980SsssN + 0.485 log D7.4,

n = 54, s = 0.247, r2 = 0.612, F = 15.1

T

T

T

T

T

T

T

est set t excluded : log Vd = −0.625 + 0.995N6-rings − 0.329fiA + 0.5807χch − 0.946SsssN + 0.725 log D7.4,

n = 51, s = 0.281, r2 = 0.568, F = 11.9

est set x excluded : log Vd = −0.655 + 1.04N6-rings − 0.207fiA + 0.4857χch − 1.58SsssN + 0.698 log D7.4,

n = 51, s = 0.273, r2 = 0.548, F = 10.9

est set z excluded : log Vd = −0.810 + 1.02N6−rings − 0.228fiA + 0.6157χch − 1.12SsssN + 0.894 log D7.4,

n = 51, s = 0.278, r2 = 0.519, F = 9.7

Structural descriptors from Eq. (11) for bases:

est set b excluded : log Vd = 1.19 − 2.41 log

(
fu

pKa

)
+ 1.05ESP− + 3.07Dipole − 0.990NOH − 2.65ABSQon + 1.971κa,

n = 40, s = 0.297, r2 = 0.799, F = 21.9

est set t excluded : log Vd = 1.30 − 2.73 log

(
fu

pKa

)
+ 1.20ESP− + 2.13Dipole − 1063NOH − 1.75ABSQon + 2.021κa,

n = 42, s = 0.300, r2 = 0.837, F = 30.0

est set x excluded : log Vd = 1.67 − 3.05 log

(
fu

pKa

)
+ 1.15ESP− + 2.98Dipole − 1.40NOH − 2.12ABSQon + 1.871κa,

n = 41, s = 0.312, r2 = 0.809, F = 24.0

est set z excluded : log Vd = 1.03 − 2.55 log

(
fu

pKa

)
+ 1.36ESP− + 3.12Dipole − 1.25NOH − 2.20ABSQon + 2.001κa,

n = 42, s = 0.261, r2 = 0.864, F = 37.0



96 T. Ghafourian et al. / International Journal of Pharmaceutics 319 (2006) 82–97

Structural descriptors from Eq. (12) for acids:

Test set b excluded : log Vd = −0.519 + 0.634N6-rings − 0.567fiA − 1.19SsssN + 0.491Pol − 0.341SaaN + 0.549
MV

TA
,

n = 53, s = 0.245, r2 = 0.633, F = 13.2

Test set t excluded : log Vd = −0.495 + 0.504N6-rings − 0.568fiA − 1.33SsssN + 0.779Pol − 0.627SaaN + 0.395
MV

TA
,

n = 50, s = 0.279, r2 = 0.591, F = 10.4

Test set x excluded : log Vd = −0.476 + 0.657N6-rings − 0.356fiA − 1.96SsssN + 0.348Pol − 0.554SaaN + 0.548
MV

TA
,

n = 51, s = 0.262, r2 = 0.594, F = 10.7

Test set z excluded : log Vd = −0.662 + 0.579N6-rings − 0.410fiA − 1.55SsssN + 0.582Pol − 0.338SaaN + 0.579
MV

TA
,

n = 50, s = 0.280, r2 = 0.534, F = 8.2

Structural descriptors from Eq. (13) for bases:

Test set b excluded : log Vd = 1.20 − 2.53 log

(
fu

pKa

)
+ 0.689ESP− + 2.64Dipole − 1.17NOH + 1.14 log P,

n = 40, s = 0.357, r2 = 0.701, F = 15.9

Test set t excluded : log Vd = 1.31 − 2.88 log

(
fu

pK

)
+ 0.716ESP− + 2.42Dipole − 1.03NOH + 1.35 log P,

24.8

T 0ESP− + 2.25Dipole − 0.967NOH + 1.52 log P,

= 25.1

T 0ESP− + 2.87Dipole − 1.08NOH + 1.33 log P,

30.5
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